Friday, May 10, 2019

Increased Tensions Could Lead to Nuclear Catastrophe














https://www.youtube.com/watch?v=diy4wRrQY8c




























































Chaos Ensues When Alabama GOP Tries to Sneakily Pass Abortion Ban














https://www.youtube.com/watch?v=FYB2eDPuXgo




























































The courage of hopelessness (CNN voter poll)













https://www.youtube.com/watch?v=fn2d1FhSIBs































































Dozens of Migrants Drown After Boat Sinks off Tunisian Coast












https://www.youtube.com/watch?v=oX6couoxXwk



























































Alabama Cracks Down On Abortions By Outlawing All Medical Procedures



















MONTGOMERY, AL—Defending the measure as necessary to fully eliminate the practice of terminating pregnancies, Alabama Gov. Kay Ivey signed a bill Friday cracking down on abortions by outlawing all medical procedures in the state.

“The only way to ensure that not a single abortion ever takes place in the state of Alabama is to close all hospitals and bar all doctors from practicing medicine,” said Ivey, explaining that it’s not up to a handful of doctors and medical professionals to play God and determine if someone should survive any given health condition, and that contracting any disease whatsoever could carry a maximum sentence of 99 years behind bars.

“Human beings were never meant to interfere and subvert God’s divine plans, whether that be a pregnancy, arthritis, cancer, schizophrenia, infection, hypertension, the stomach flu, or even a common cold. It’s simply not our place to decide who lives and who dies, so we must no longer allow treatment for any illness or injury.”

At press time, approximately 2,611,489 Alabamans had already died.



























Methane-consuming bacteria could be the future of fuel











Discovery illuminates how bacteria turn methane gas into liquid methanol

May 9, 2019

Northwestern University

Researchers have found that the enzyme responsible for the methane-methanol conversion in methanotrophic bacteria catalyzes the reaction at a site that contains just one copper ion. This finding could lead to newly designed, human-made catalysts that can convert methane -- a highly potent greenhouse gas -- to readily usable methanol with the same effortless mechanism.
     







Known for their ability to remove methane from the environment and convert it into a usable fuel, methanotrophic bacteria have long fascinated researchers. But how, exactly, these bacteria naturally perform such a complex reaction has been a mystery.

Now an interdisciplinary team at Northwestern University has found that the enzyme responsible for the methane-methanol conversion catalyzes this reaction at a site that contains just one copper ion.

This finding could lead to newly designed, human-made catalysts that can convert methane -- a highly potent greenhouse gas -- to readily usable methanol with the same effortless mechanism.

"The identity and structure of the metal ions responsible for catalysis have remained elusive for decades," said Northwestern's Amy C. Rosenzweig, co-senior author of the study. "Our study provides a major leap forward in understanding how bacteria methane-to-methanol conversion."

"By identifying the type of copper center involved, we have laid the foundation for determining how nature carries out one of its most challenging reactions," said Brian M. Hoffman, co-senior author.

The study will publish on Friday, May 10 in the journal Science. Rosenzweig is the Weinberg Family Distinguished Professor of Life Sciences in Northwestern's Weinberg College of Arts and Sciences. Hoffman is the Charles E. and Emma H. Morrison Professor of Chemistry at Weinberg.

By oxidizing methane and converting it to methanol, methanotrophic bacteria (or "methanotrophs") can pack a one-two punch. Not only are they removing a harmful greenhouse gas from the environment, they are also generating a readily usable, sustainable fuel for automobiles, electricity and more.

Current industrial processes to catalyze a methane-to-methanol reaction require tremendous pressure and extreme temperatures, reaching higher than 1,300 degrees Celsius. Methanotrophs, however, perform the reaction at room temperature and "for free."

"While copper sites are known to catalyze methane-to-methanol conversion in human-made materials, methane-to-methanol catalysis at a monocopper site under ambient conditions is unprecedented," said Matthew O. Ross, a graduate student co-advised by Rosenzweig and Hoffman and the paper's first author. "If we can develop a complete understanding of how they perform this conversion at such mild conditions, we can optimize our own catalysts."

The study, "Particulate methane monooxygenase contains only mononuclear copper centers," was supported by the National Institutes of Health (award numbers GM118035, GM111097 and 5T32GM008382) and the National Science Foundation (award number 1534743).


Story Source:

Materials provided by Northwestern University. Original written by Amanda Morris. Note: Content may be edited for style and length.


Journal Reference:

Matthew O. Ross, Fraser MacMillan, Jingzhou Wang, Alex Nisthal, Thomas J. Lawton, Barry D. Olafson, Stephen L. Mayo, Amy C. Rosenzweig, Brian M. Hoffman. Particulate methane monooxygenase contains only mononuclear copper centers. Science, 2019; 364 (6440): 566-570 DOI: 10.1126/science.aav2572



















Phage Therapy Treats Patient With Drug-resistant Bacterial Infection



















Scientists have used an experimental therapy that relies on bacteria-infecting viruses collected, in part, through HHMI’s SEA-PHAGES program to fight a Mycobacterium infection in a 15-year-old girl.


The patient, a 15-year-old girl, had come to London’s Great Ormond Street Hospital for a double lung transplant.


It was the summer of 2017, and her lungs were struggling to reach even a third of their normal function. She had cystic fibrosis, a genetic disease that clogs lungs with mucus and plagues patients with persistent infections. For eight years, she had been taking antibiotics to control two stubborn bacterial strains.


Weeks after the transplant, doctors noticed redness at the site of her surgical wound and signs of infection in her liver. Then, they saw nodules – pockets of bacteria pushing up through the skin – on her arms, legs, and buttocks. The girl’s infection had spread, and traditional antibiotics were no longer working.


Now, a new personalized treatment is helping the girl heal. The treatment relies on genetically engineering bacteriophages, viruses that can infect and kill bacteria. Over the next six months, nearly all of the girl’s skin nodules disappeared, her surgical wound began closing, and her liver function improved, scientists report May 8, 2019, in the journal Nature Medicine.


The work is the first to demonstrate the safe and effective use of engineered bacteriophages in a human patient, says Graham Hatfull, a Howard Hughes Medical Institute (HHMI) Professor at the University of Pittsburgh. Such a treatment could offer a personalized approach to countering drug-resistant bacteria. It could even potentially be used more broadly for controlling diseases like tuberculosis.


“The idea is to use bacteriophages as antibiotics – as something we could use to kill bacteria that cause infection,” Hatfull says.


Phage hunters


In October 2017, Hatfull received the email that set his team on a months-long bacteriophage-finding quest.


A colleague at the London hospital laid out the case: two patients, both teenagers. Both had cystic fibrosis and had received double lung transplants to help restore lung function. Both had been chronically infected with strains of Mycobacterium, relatives of the bacterium that causes tuberculosis.


But maybe something else could help. Hatfull, a molecular geneticist, had spent over three decades amassing a colossal collection of bacteriophages, or phages, from the environment. Hatfull’s colleague asked whether any of these phages could target the patients’ strains.


It was a fanciful idea, Hatfull says, and he was intrigued. His phage collection – the largest in the world – resided in roughly 15,000 vials and filled the shelves of two six-foot-tall freezers in his lab. They had been collected from thousands of different locations worldwide – and largely by students.


Hatfull leads an HHMI program called SEA-PHAGES that offers college freshmen and sophomores the opportunity to hunt for phages. In 2018, nearly 120 universities and colleges and 4,500 students nationwide participated in the program, which has involved more than 20,000 students in the past decade.


There are more than a nonillion (that’s a quadrillion times a quadrillion) phages in the dirt, water, and air. After testing samples to find a phage, students study it. They’ll see what it looks like under an electron microscope, sequence its genome, test how well it infects and kills bacteria, and figure out where it fits on the phage family tree.


“This program engages beginning students in real science,” says David Asai, HHMI’s senior director for science education and director of the SEA-PHAGES program. “Whatever they discover is new information.” That basic biological info is valuable, he says. “Now the phage collection has actually contributed to helping a patient.”


That wasn’t the program’s original intent, Asai and Hatfull say. “I had a sense that this collection was enormously powerful for addressing all sorts of questions in biology,” Hatfull says. “But we didn’t think we’d ever get to a point of using these phages therapeutically.”


Experimental therapy


The idea of phage therapy has been around for nearly a century. But until recently, there wasn’t much data about the treatment’s safety and efficacy. In 2017, doctors in San Diego, California, successfully used phages to treat a patient with a multidrug-resistant bacterium. That case, and the rise of antibiotic resistance, has fueled interest in phages, Hatfull says.


Less than a month after he heard about the two infected patients in London, he received samples of their bacterial strains. His team searched their collection for phages that could potentially target the bacteria.


They tested individual phages known to infect bacterial relatives of the patients’ strains, and mixed thousands of other phages together and tested the lot. They were looking for something that could clear the whitish film of bacteria growing on plastic dishes in the lab. If a phage could do that, the team reasoned, it might able to fight the patients’ infections.


In late January, the team found a winner – a phage that could hit the strain that infected one of the teenagers. But they were too late, Hatfull says. The patient had died earlier that month. “These really are severe, life-threating infections,” he says.


His team had a few leads for the second patient, though: three phages, named Muddy, ZoeJ, and BPs. Muddy could infect and kill the girl’s bacteria, but ZoeJ and BPs weren’t quite so efficient. So Hatfull and his colleagues tweaked the two phages’ genomes to turn them into bacteria killers. They removed a gene that lets the phages reproduce harmlessly within a bacterial cell. Without the gene, the phages reproduce and burst from the cell, destroying it. Then they combined the trio into a phage cocktail, purified it, and tested it for safety.


In June 2018, doctors administered the cocktail to the patient via an IV twice daily with a billion phage particles in every dose. After six weeks, a liver scan revealed that the infection had essentially disappeared. Today, only one or two of the girl’s skin nodules remain. Hatfull has high hopes: the bacteria haven’t shown any signs of developing resistance to the phages, and his team has prepped a fourth phage to add to the mix.


Finding the right phages for each patient is a big challenge, Hatfull says. One day, scientists may be able to concoct a phage cocktail that works more broadly to treat diseases, like the Pseudomonas infections that threaten burn patients.


“We’re sort of in uncharted territory,” he says. But the basics of the young woman’s case are pretty simple, he adds. “We purified the phages, we gave them to the patient, and the patient got better.”


This article has been republished from materials provided by Howard Hughes Medical Institute. Note: material may have been edited for length and content. For further information, please contact the cited source.


Reference:


Rebekah M. Dedrick et al. “Engineered bacteriophages for treatment of a patient with a disseminated drug resistant Mycobacterium abscessus.” Nature Medicine. Published online May 8, 2019. doi: 10.1038/s41591-019-0437-z