Sunday, June 10, 2018

Cute kitties and dialectical materialism








Image result for cute kitties





























https://www.youtube.com/watch?v=JvBCfZfzWHM


























Image result for cute kitties






















It's time for a sectarian split from the main corpse of the Democratic party














Image result for progressives














Now is the time to form a third US political party






'Slap in the Face' to Progressive Outsiders as DNC Adopts Rule Forcing Presidential Candidates to Be Members of Democratic Party





"I'm just stunned that the Democratic Party’s rules committee would want to try to make the Democratic Party an exclusive club, for which we want to exclude voters and large segments of the American electorate."










"The DNC has learned nothing."

That was how the advocacy group People for Bernie reacted to reports late Friday that the rules and bylaws arm of the Democratic National Committee has moved ahead with a new resolution that, according to Yahoo News, would "force candidates in Democratic presidential primaries to state that they are Democrats" and "to 'run and serve' as a member" of the party.

While allies of Sen. Bernie Sanders (I-Vt.)—who ran as a Democrat in the 2016 presidential primary while still identifying as an independent—said they don't expect the new rules to hinder Sanders' chances of running for the Democratic nomination in 2020 if he chooses to do so, many supporters of the Vermont senator characterized the rule change as a completely unnecessary "slap in the face" to progressive outsiders.

"We just came off a devastating presidential loss in 2016. It would seem to me the actual impetus would be to expand the Democratic Party. I just for the life of me don't see any motivation for this beyond personal spite," Mark Longabaugh, a senior adviser to Sanders' 2016 presidential campaign, told Yahoo News. "I scratch my head and ask why they would want to make the party more narrow and more exclusive."

Other progressives echoed Longabaugh's critique of the new rule on social media, with many noting that such restrictions could demobilize large constituencies that are disaffected with both major political parties.

Following his 2016 presidential campaign, Sanders—who is now far-and-away the most popular politician in the country—repeatedly emphasized the importance of creating a more inclusive party organized around the needs of the poor and working class, not corporate donors.

"If the Democratic Party is going to succeed... it's gonna have to open its door to independents," Sanders said in an interview last April. "There are probably more independents in this country than Democrats or Republicans. It's got to open its doors to working people and to young people, create a grassroots party."

Speaking with Politico on Friday, Longabaugh argued that the DNC's new rule would do precisely the opposite, moving the party even closer to becoming an "exclusive club."

"I really don't get the motivation for the resolution at all," he said. "You know, Bernie Sanders got 13 million votes in 2016. Thousands, if not millions, of those votes were young people and independents he brought into the Democratic Party."

The full DNC is expected to hold a final vote on the new resolution in August.


















The Future of Global Capitalism with David Harvey









https://www.youtube.com/watch?v=9hgszeNb8wU
























































Saturday, June 9, 2018

Hurricanes are slowing down, and that's bad news













June 8, 2018

University of Wisconsin-Madison

Some hurricanes are moving more slowly, spending increased time over land and leading to catastrophic local rainfall and flooding, according to a new study.





Some hurricanes are moving more slowly, spending increased time over land and leading to catastrophic local rainfall and flooding, according to a new study published Wednesday (June 6) in the journal Nature.

While hurricanes batter coastal regions with destructive wind speeds, study author James Kossin says the speed at which hurricanes track along their paths -- their translational speed -- can also play a role in the damage and devastation they cause. Their movement influences how much rain falls in a given area.

This is especially true as global temperatures increase.

"Just a 10 percent slowdown in hurricane translational speed can double the increase in rainfall totals caused by 1 degree Celsius of global warming," says Kossin, a researcher at the National Oceanic and Atmospheric Administration's (NOAA) Center for Weather and Climate. He is based at the University of Wisconsin-Madison.

The study compared 68 years (1949-2016) of worldwide hurricane track and intensity data, known as best-track data, from NOAA to identify changes in translational speeds. It found that, worldwide, hurricane translational speeds have averaged a 10 percent slowdown in that time.

One recent storm highlights the potential consequences of this slowing trend. In 2017, Hurricane Harvey stalled over eastern Texas rather than dissipating over land, as hurricanes tend to do. It drenched Houston and nearby areas with as much as 50 inches of rain over several days, shattering historic records and leaving some areas under several feet of water.

How much hurricanes have slowed depends on where they occur, Kossin found. "There is regional variation in the slowdown rates when looking at the 10 percent global average across the same time frame," he says.

The most significant slowdown, 20 percent, occurred in the Western North Pacific Region, an area that includes Southeast Asia. Nearby, in the Australian Region, Kossin identified a reduction of 15 percent. In the North Atlantic Region, which includes the U.S., Kossin found a 6 percent slowdown in the speeds at which hurricanes move.

When further isolating the analysis to hurricane speeds over land, where their impact is greatest, Kossin found that slowdown rates can be even greater. Hurricanes over land in the North Atlantic have slowed by as much as 20 percent, and those in the Western North Pacific as much as 30 percent.

Kossin attributes this, in part, to the effects of climate change, amplified by human activity. Hurricanes move from place to place based on the strength of environmental steering winds that push them along. But as the Earth's atmosphere warms, these winds may weaken, particularly in places like the tropics, where hurricanes frequently occur, leading to slower-moving storms.

Additionally, a warmer atmosphere can hold more water vapor, potentially increasing the amount of rain a hurricane can deliver to an area.

The study complements others that demonstrate climate change is affecting hurricane behavior.

For instance, in 2014, Kossin showed that hurricanes are reaching their maximum intensities further from the tropics, shifting toward the poles in both the Northern and Southern Hemispheres. These shifts can deliver hurricanes to areas -- including some heavily populated coastal regions -- that have not historically dealt with direct hits from storms and the devastating losses of life and property that can result.

Another study, published in April by researchers at the National Center for Atmospheric Research, used a modeling approach to look at what would happen to hurricanes under future climate projections. Using real hurricane data from 2000-2013, the researchers found future hurricanes will experience a 9 percent slowdown, higher wind speeds, and produce 24 percent more rainfall.

"The rainfalls associated with the 'stall' of 2017's Hurricane Harvey in the Houston, Texas, area provided a dramatic example of the relationship between regional rainfall amounts and hurricane translation speeds," says Kossin. "In addition to other factors affecting hurricanes, like intensification and poleward migration, these slowdowns are likely to make future storms more dangerous and costly."














Researchers Reverse Cognitive Impairments in Mice With Dementia















Fri, 06/08/2018 - 2:52pm


by Temple University Health System




Reversing memory deficits and impairments in spatial learning is a major goal in the field of dementia research. A lack of knowledge about cellular pathways critical to the development of dementia, however, has stood in the way of significant clinical advance. But now, researchers at the Lewis Katz School of Medicine at Temple University (LKSOM) are breaking through that barrier. They show, for the first time in an animal model, that tau pathology - the second-most important lesion in the brain in patients with Alzheimer's disease - can be reversed by a drug.

"We show that we can intervene after disease is established and pharmacologically rescue mice that have tau-induced memory deficits," explained senior investigator Domenico Praticò, MD, Scott Richards North Star Foundation Chair for Alzheimer's Research, Professor in the Departments of Pharmacology and Microbiology, and Director of the Alzheimer's Center at Temple at LKSOM. The study, published online in the journal Molecular Neurobiology, raises new hope for human patients affected by dementia.

The researchers landed on their breakthrough after discovering that inflammatory molecules known as leukotrienes are deregulated in Alzheimer's disease and related dementias. In experiments in animals, they found that the leukotriene pathway plays an especially important role in the later stages of disease.

"At the onset of dementia, leukotrienes attempt to protect nerve cells, but over the long term, they cause damage," Dr. Praticò said. "Having discovered this, we wanted to know whether blocking leukotrienes could reverse the damage, whether we could do something to fix memory and learning impairments in mice having already abundant tau pathology."

To recapitulate the clinical situation of dementia in humans, in which patients are already symptomatic by the time they are diagnosed, Dr. Praticò and colleagues used specially engineered tau transgenic mice, which develop tau pathology - characterized by neurofibrillary tangles, disrupted synapses (the junctions between neurons that allow them to communicate with one another), and declines in memory and learning ability - as they age. When the animals were 12 months old, the equivalent of age 60 in humans, they were treated with zileuton, a drug that inhibits leukotriene formation by blocking the 5-lipoxygenase enzyme.

After 16 weeks of treatment, animals were administered maze tests to assess their working memory and their spatial learning memory. Compared with untreated animals, tau mice that had received zileuton performed significantly better on the tests. Their superior performance suggested a successful reversal of memory deficiency.

To determine why this happened, the researchers first analyzed leukotriene levels. They found that treated tau mice experienced a 90-percent reduction in leukotrienes compared with untreated mice. In addition, levels of phosphorylated and insoluble tau, the form of the protein that is known to directly damage synapses, were 50 percent lower in treated animals. Microscopic examination revealed vast differences in synaptic integrity between the groups of mice. Whereas untreated animals had severe synaptic deterioration, the synapses of treated tau animals were indistinguishable from those of ordinary mice without the disease.

"Inflammation was completely gone from tau mice treated with the drug," Dr. Praticò said. "The therapy shut down inflammatory processes in the brain, allowing the tau damage to be reversed."

The study is especially exciting because zileuton is already approved by the Food and Drug Administration for the treatment of asthma. "Leukotrienes are in the lungs and the brain, but we now know that in addition to their functional role in asthma, they also have a functional role in dementia," Dr. Praticò explained.

"This is an old drug for a new disease," he added. "The research could soon be translated to the clinic, to human patients with Alzheimer's disease."

















In desert trials, next-generation water harvester delivers fresh water from air








By Robert Sanders, Media relations | JUNE 8, 2018




Last October, a UC Berkeley team headed down to the Arizona desert, plopped their newest prototype water harvester into the backyard of a tract home and started sucking water out of the air without any power other than sunlight.

The successful field test of their larger, next-generation harvester proved what the team had predicted earlier in 2017: that the water harvester can extract drinkable water every day/night cycle at very low humidity and at low cost, making it ideal for people living in arid, water-starved areas of the world.

“There is nothing like this,” said Omar Yaghi, who invented the technology underlying the harvester. “It operates at ambient temperature with ambient sunlight, and with no additional energy input you can collect water in the desert. This laboratory-to-desert journey allowed us to really turn water harvesting from an interesting phenomenon into a science.”

Yaghi, the James and Neeltje Tretter chair in chemistry at UC Berkeley and a faculty scientist at Lawrence Berkeley National Laboratory, and his team will report the results of the first field test of a water-collecting harvester in the June 8 issue of the journal Science Advances.

The trial in Scottsdale, where the relative humidity drops from a high of 40 percent at night to as low as 8 percent during the day, demonstrated that the harvester should be easy to scale up by simply adding more of the water absorber, a highly porous material called a metal-organic framework, or MOF. The researchers anticipate that with the current MOF (MOF-801), made from the expensive metal zirconium, they will ultimately be able to harvest about 200 milliliters (about 7 ounces) of water per kilogram (2.2 pounds) of MOF, or 3 ounces of water per pound.

But Yaghi also reports that he has created a new MOF based on aluminum, called MOF-303, that is at least 150 times cheaper and captures twice as much water in lab tests. This will enable a new generation of harvesters producing more than 400 ml (3 cups) of water per day from a kilogram of MOF, the equivalent of half a 12-ounce soda can per pound per day.

“There has been tremendous interest in commercializing this, and there are several startups already engaged in developing a commercial water-harvesting device,” Yaghi said. “The aluminum MOF is making this practical for water production, because it is cheap.”

Yaghi is also working with King Abdul Aziz City for Science and Technology in Riyadh, Saudi Arabia, and its president, Prince Dr. Turki Saud Mohammad Al Saud, on the technology as part of their joint research Center of Excellence for Nanomaterials and Clean Energy.

Super-absorbent MOFs

Yaghi is a pioneer in metal-organic frameworks, which are solids with so many internal channels and holes that a sugar-cube-size MOF might have an internal surface area the size of six football fields. This surface area easily absorbs gases or liquids but, just as important, quickly releases them when heated. Various types of MOFs are already being tested as a way to pack more gas into the tanks of hydrogen-fueled vehicles, absorb carbon dioxide from smokestacks and store methane.

Several years ago, Yaghi created MOF-801, which absorbs and releases water easily, and last year he tested small quantities in a simple harvester to see if he could capture water from ambient air overnight and use the heat of the sun to drive it out again for use. That harvester, built by a collaborator at MIT using less than 2 grams of MOF, proved that the concept worked: the windows fogged up in the sun, though the researchers were not able to collect or accurately measure the water.

That same harvester was transported to the desert earlier this year and worked similarly, though again only droplets of water were generated as a proof of concept.

For the new paper, the UC Berkeley team — graduate student Eugene Kapustin and postdoctoral fellows Markus Kalmutzki and Farhad Fathieh — collected and measured the water and tested the latest generation harvester under varying conditions of humidity, temperature and solar intensity.

The harvester is essentially a box within a box. The inner box holds a 2-square-foot bed of MOF grains open to the air to absorb moisture. This is encased in a two-foot plastic cube with transparent top and sides. The top was left open at night to let air flow in and contact the MOF, but was replaced during the day so the box could heat up like a greenhouse to drive water back out of the MOF. The released water condensed on the inside of the outer box and fell to the bottom, where the researchers collected it with a pipette.


The extensive field tests lay out a blueprint allowing engineers to configure the harvester for the differing conditions in Arizona, the Mediterranean or anywhere else, given a specific MOF.

“The key development here is that it operates at low humidity, because that is what it is in arid regions of the world,” Yaghi said. In these conditions, the harvester collects water even at sub-zero dew points.

Yaghi is eagerly awaiting the next field test, which will test the aluminum-based MOF and is planned for Death Valley in late summer, where temperatures reach 110 degrees Fahrenheit in the daytime and remain in the 70s at night, with nighttime humidity as low as 25 percent.

Other co-authors of the paper are graduate students Peter Waller and Jingjing Yang. The work was supported by the U.S. National Science Foundation, German Research Foundation and KACST.